Chapter 3 Selection Statements

The boolean Type and Operators

Often in a program you need to compare two values, such as whether i is greater than j. Java provides six comparison operators (also known as relational operators) that can be used to compare two values. The result of the comparison is a Boolean value: true or false.

boolean b = (1 > 2);

Comparison Operators

Operator	Name
<	less than
<=	less than or equal to
>	greater than
>=	greater than or equal to
==	equal to
! =	not equal to

Logical Operators

Operator	Name
!	not
& &	and
	or
^	exclusive or

Truth Table for Operator !

p	!p	Example
true	false	!(1 > 2) is true, because $(1 > 2)$ is false.
false	true	!(1 > 0) is false, because $(1 > 0)$ is true.

Truth Table for Operator &&

p1	p2	p1 && p2	Example
false	false	false	(3 > 2) && $(5 >= 5)$ is true, because $(3 > 2)$
false	true	false	2) and $(5 \ge 5)$ are both true.
true	false	false	(3 > 2) && $(5 > 5)$ is false, because $(5 > 3)$
true	true	true	5) is false.

Truth Table for Operator ||

p1	p2	p1 p2	Example
false	false	false	$(2 > 3) \parallel (5 > 5)$ is false, because $(2 > 3)$
false	true	true	and $(5 > 5)$ are both false.
true	false	true	$(3 > 2) \parallel (5 > 5)$ is true, because $(3 > 2)$
true	true	true	is true.

Truth Table for Operator ^

p1	p2	p1 ^ p2	Example
false	false	false	$(2 > 3) \land (5 > 1)$ is true, because $(2 > 3)$
false	true	true	is false and $(5 > 1)$ is true.
true	false	true	$(3 > 2) \land (5 > 1)$ is false, because both (3
true	true	false	> 2) and (5 $>$ 1) are true.

Example

int num = 9;

boolean ba = ((num % 2 == 0) && (num % 3 == 0));System.out.println("Is " + num + " divisible by 2 and 3? " + ba);

boolean bb = ((num % 2 == 0) || (num % 3 == 0));System.out.println("Is " + num + " divisible by 2 or 3? " + bb);

boolean bc = $((num \% 2 == 0) \land (num \% 3 == 0));$ System.out.println("Is " + num + " divisible by 2 or 3, but not both? " + bc);

Example: Determining Leap Year?

Write a program that first prompts the user to enter a year as an <u>int</u> value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by 100, or it is divisible by 400.

(year % 4 == 0 && year % 100 != 0) || (year % 400 == 0)