Chapter 3
 Selection Statements

The boolean Type and Operators

Often in a program you need to compare two values, such as whether i is greater than j. Java provides six comparison operators (also known as relational operators) that can be used to compare two values. The result of the comparison is a Boolean value: true or false.
boolean $\mathrm{b}=(1>2)$;

Comparison Operators

Operator Name
less than
$<=\quad$ less than or equal to
> greater than
$>=\quad$ greater than or equal to
$==\quad$ equal to
$!=\quad$ not equal to

Logical Operators

Operator Name
!
\& \&
| |
or
exclusive or

Truth Table for Operator !

p	$!p$
true	false
false	true

Example
$!(1>2)$ is true, because $(1>2)$ is false.
$!(1>0)$ is false, because $(1>0)$ is true.

Truth Table for Operator \&\&

p1	p2	p1 \& \& p2	Example
false	false	false	$(3>2) \& \&(5>=5)$ is true, because $(3>$
false	true	false	$2)$ and $(5>=5)$ are both true.
true	false	false	$(3>2) \& \&(5>5)$ is false, because $(5>$
true	true	true	$5)$ is false.

Truth Table for Operator ||

| p1 | p2 | p1 \|| p2 |
| :--- | :--- | :--- |
| false | false | false |
| false | true | true |
| true | false | true |
| true | true | true |

Example

$(2>3) \|(5>5)$ is false, because $(2>3)$ and $(5>5)$ are both false.
$(3>2) \|(5>5)$ is true, because $(3>2)$ is true.

Truth Table for Operator ^

$\mathrm{p1}$	p 2	$\mathrm{p} 1 \wedge \mathrm{p} 2$
false	false	false
false	true	true
true	false	true
true	true	false

Example
$(2>3)^{\wedge}(5>1)$ is true, because $(2>3)$ is false and $(5>1)$ is true.
$(3>2)^{\wedge}(5>1)$ is false, because both $(3$ $>2)$ and $(5>1)$ are true.

Example

int num $=9$;
boolean $\mathrm{ba}=(($ num $\% 2==0) \& \&($ num $\% 3==0))$;
System.out.println("Is " + num + " divisible by 2 and 3 ? " + ba);
boolean $\mathrm{bb}=(($ num $\% 2==0) \|($ num $\% 3==0))$;
System.out.println("Is " + num + " divisible by 2 or 3? " + bb);
boolean bc = ((num \% $2==0)^{\wedge}($ num $\left.\% 3==0)\right)$;
System.out.println("Is " + num + " divisible by 2 or 3, but not both? " + bc);

Example: Determining Leap Year?

Write a program that first prompts the user to enter a year as an int value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by 100 , or it is divisible by 400 .
(year $\% 4=0$ \&\& year $\% 100!=0) \|($ year $\% 400==0)$

